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Local networks of pyramidal cells in neocortex are extensively inter-
connected through recurrent collaterals1. Anatomical studies have 
shown that these networks could be potentially fully connected, in the 
sense that axons of presynaptic pyramidal cells pass within a microm-
eter of dendrites of all neighboring pyramidal cells2. Because dynami-
cally growing or retracting dendritic spines can bridge this distance3, 
it is thought that this geometry gives the local network a property of 
being potentially fully connected4, even though electrophysiologi-
cal studies detect connections only in approximately 10% of pairs of 
neurons5–10. Investigations of the statistical properties of the result-
ing recurrent connectivity have revealed a number of nonrandom 
features, such as an over-representation of bidirectionally connected 
pairs or of specific higher order network motifs10–14.

This recurrent connectivity has long been hypothesized to allow 
cortical networks to store an extensive amount of information. 
However, there is a debate over the format of stored information. 
One popular theory is that information is stored in the form of attrac-
tor states15,16: specific attractors of the network dynamics represent 
learned internal representations of external stimuli that have been 
repeatedly presented to the network. In the simplest type of attractors, 
a subset of neurons is active at elevated firing rates, while the rest stay 
at background activity levels17. This is consistent with a wide array of 
experimental data on persistent activity during delayed response tasks 
in monkeys in various cortical areas18–21. Another popular theory 
posits that information is stored in the form of sequences of activ-
ity22,23. Such a theory is consistent with sequential activity observed, 
for example, in the posterior parietal cortex24 and hippocampus25.

Theoretical models that describe persistent activity, or sequences 
of activity, in large networks of neurons typically assume very spe-
cific connectivity rules. It is unclear whether cortical connectivity 
obeys the rules postulated by these models. Here we adopt a com-
pletely different approach that was pioneered by Gardner26 (Fig. 1).  
The idea is to consider the space of all possible connectivity matrices, 
without making any assumption on the specific form of the learning 

rule, except that it should be able to learn specific patterns of activity. 
Specific patterns of activity that need to be learned by the network 
impose specific constraints on the synaptic connectivity. The more 
patterns are learned by the network, the smaller the set of synaptic 
weights that stabilize all the patterns as attractors of the dynamics. 
As shown by Gardner, the maximal capacity of the network (maxi-
mal number of patterns that can be stored) can be computed as the 
number of patterns for which the ‘typical’ volume of the set of weights 
that satisfies all the constraints imposed by learning goes to zero. 
Here we characterize the statistics of connectivity matrices satisfy-
ing all constraints imposed by learning when the network is close to 
maximal capacity.

RESULTS
Model and approach
Cortical networks are composed of excitatory and inhibitory neu-
rons. Some evidence suggests that the excitatory subnetwork is highly 
structured, while connections involving inhibitory interneurons are 
more stereotyped, with close to full local connectivity27,28. We there-
fore focused on the excitatory connectivity and first incorporated 
inhibition in the thresholds of excitatory neurons (see below for a 
discussion of models in which inhibitory neurons are explicitly mod-
eled). We considered a large, potentially fully connected network of N 
excitatory neurons, with a connectivity matrix wij ≥ 0 (i,j = 1, … , N)  
(Fig. 1a). For simplicity, neurons were taken to be binary, with  
two possible states, 0 (inactive) or 1 (active). At each time step,  
neurons were active (inactive), Si(t + 1) = 1 (0), if their summed  
synaptic inputs 

j N
ij jw S t

= …
∑ ( )
1, ,  

were above (below) a threshold T, incorporating in an effective 
way inhibitory neurons. The connectivity matrix was assumed to 
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Is cortical connectivity optimized for storing information?
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Cortical networks are thought to be shaped by experience-dependent synaptic plasticity. Theoretical studies have shown that 
synaptic plasticity allows a network to store a memory of patterns of activity such that they become attractors of the dynamics 
of the network. Here we study the properties of the excitatory synaptic connectivity in a network that maximizes the number 
of stored patterns of activity in a robust fashion. We show that the resulting synaptic connectivity matrix has the following 
properties: it is sparse, with a large fraction of zero synaptic weights (‘potential’ synapses); bidirectionally coupled pairs of 
neurons are over-represented in comparison to a random network; and bidirectionally connected pairs have stronger synapses on 
average than unidirectionally connected pairs. All these features reproduce quantitatively available data on connectivity in cortex. 
This suggests synaptic connectivity in cortex is optimized to store a large number of attractor states in a robust fashion. 
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have been shaped by the learning of p random uncorrelated binary  
patterns of activity hm

i  (i = 1, … , N, µ = 1, … , p), drawn randomly 
with a coding level f (for all i and µ, hm

i = 1 with probability f and 
0 with probability 1 − f  ). These patterns of activity were defined as 
being learned only when they were attractors of the dynamics of the 
network. Furthermore, we imposed a minimal size K of the basins of 
attraction of each attractor, by requiring that the summed synaptic 
inputs were above T + K (below T − K) for neurons that should be 
active (inactive) in a given attractor, to ensure robustness of these 
attractors in the face of noise. Attractors and their basins of attraction 
are sketched schematically in Figure 1b.

We used two approaches to characterize the statistics of net-
work connectivity. The first approach uses the ‘cavity method’ from  
statistical physics29. The idea of the cavity method is to compute self-
consistently the distributions of ‘local fields’ (that is, the distributions 
of total inputs to neurons when the network is in an attractor state 
corresponding to one of the learned patterns) and synaptic weights, 
in the subspace of weights satisfying all constraints imposed by learn-
ing (Fig. 1c). These constraints take the form of hyperplanes in the 
spaces of input connectivity of each input neuron (Online Methods, 
equations (1) and (2)), that separate regions of synaptic connectivity 
that satisfy the constraints from regions that do not. Increasing the 
robustness parameter K means that the constraints are more strin-
gent and, consequently, that the subspace of weights satisfying all 
constraints becomes smaller. The calculation involves performing 
two types of averages: an average over all weights in this subspace 
and an average over random patterns (see Supplementary Note).  
We used this approach to compute the distribution of synaptic weights 
in optimal networks, as well as the joint distributions of pairs of 
weights. The second approach was to use numerical simulations, 
using the perceptron learning algorithm30, adapted to networks with 
non-negative weights31, independently for each neuron to learn the 
randomly generated patterns. The advantage of using this algorithm 

is that it is guaranteed to find a solution to the learning problem, 
provided such a solution exists.

Distribution of synaptic weights
We first computed the distribution of synaptic weights, in a network 
that maximizes the number of stored patterns for a fixed robust-
ness level or, equivalently, maximizes the robustness level for a fixed 
number of stored patterns, using the cavity method. We found this 
distribution to be identical to the distribution in perceptrons with 
excitatory weights at maximal storage capacity32: it is composed of a 
delta function at zero weight (‘potential’ synapses) and a truncated 
Gaussian at positive weights (Fig. 2). The fraction of zero-weight 
synapses is large (50% or more) for any parameter of the model.  
The connectivity matrix of a network close to its maximal storage 
capacity is therefore a sparse matrix. The connection probability is 
determined primarily by the robustness of the attractors, as measured 
by a rescaled robustness parameter 

r = −( )( )K w f f N1 , 

where w is the average synaptic weight (Supplementary Note): 
it is 50% when ρ = 0, but goes to zero in the limit of a large ρ  
(Fig. 2b). Hence, the more robust the information storage, the sparser 
the network. This is because the boundary of the subspace of con-
nectivity matrices satisfying all the constraints includes two types of 
hyperplanes: those associated with the learned patterns and those that 
enforce the sign constraints on the weights; that is, wij = 0 for some i,j 
(Fig. 1c). Increasing the robustness implies increasing the distance 
from the pattern-associated hyperplanes, but not from the sign-con-
straint-associated ones. Therefore, networks maximizing robustness 
typically lie on a large fraction of wij = 0 hyperplanes (Fig. 1c).

This distribution of synaptic weights is in good agreement with 
experimental data in neocortex. Anatomical studies have found that 
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a b cFigure 1 Model and space of synaptic weights. (a) Sketch of the network 
model. N neurons (here, N = 4) are connected through recurrent synaptic 
connections (black circles with a diameter proportional to synaptic 
strength, at the intersections of vertical lines representing dendrites  
and horizontal lines representing axons). A particular pattern that needs  
to be stored is “1010,” in which neurons 1 and 3 need to be active  
while neurons 2 and 4 need to be silent. For this particular pattern  
to be stored, connections between neurons 1 and 3 need to be strong.  
(b) Sketch of ‘attractor landscape’ in the space of network states.  
Black circles are attractors of the network dynamics (here, p = 4).  
Lines indicate boundaries of basins of attraction around each attractor. The larger these basins, the more robust the attractors are against noise. 
The size of the basins of attraction is measured by the parameter K. (c) Sketch of the space of couplings: three patterns to be stored constrain the 
synaptic weights to be in the white region. Constraints corresponding to the three patterns are shown as the three colored lines, while the w1 = 0 
and w2 = 0 axes are shown as black lines. Arrows indicate possible learning dynamics through the space of weights that reach the white region.  
The black circle indicates the synaptic connectivity that maximizes robustness, as it lies at a maximal distance from the colored lines. Note that in 
this example this point lies on the w1 = 0 axis.
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Figure 2 Distribution of synaptic weights of an optimal network.  
(a) Optimal distribution of weights at maximal capacity, for different 
values of the robustness parameter ρ. The thin black line shows the result  
of a numerical simulation using the perceptron learning algorithm in a 
network of N = 800 neurons, for ρ = 0, f = 0.5. Note that the distribution 
of weights depends only on two parameters, the mean weight and ρ,  
which determines its shape (and in particular the fraction of zero- 
weight synapses). (b) Connection probability (P(wij > 0) = 1 – P(wij = 0)) 
at maximal capacity as a function of robustness parameter, for different 
values of the coding level f. Circles show the result of simulations  
(N = 800, f = 0.5). The horizontal line shows the observed connection probability in the data of ref. 11. (c) Distribution of synaptic weights of optimal 
network (black curve) versus experimentally recorded distribution of weights (gray histogram)11.
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local networks of pyramidal cells in neocortex could potentially be 
fully connected2. However, electrophysiological studies have con-
sistently found connection probabilities of order 10% (refs. 5–10). 
This discrepancy between anatomy and electrophysiology is entirely 
consistent with the attractor model close to maximal capacity. 
Furthermore, published distributions of synaptic weights are also 
consistent with the theory. Figure 2c shows a comparison between 
the distribution of synaptic weights recorded by Sjöström and col-
leagues (paired recordings of layer 5 pyramidal neurons7,11) and the 
analytically calculated distribution, whose parameters are fixed in 
order to reproduce the observed connection probability (c = 0.116) 
and average synaptic weight. The theoretical distribution is in good 
agreement with the experimental one, except that it overestimates the 
fraction of very weak synapses (those with excitatory postsynaptic 
potential amplitudes smaller than 0.1 mV) and underestimates the 
fraction of very strong synapses (those with amplitudes larger than 
3 mV). The overestimation of very weak synapses could be due to 
under-reporting of very weak synapses owing to noise32. Alternatively, 
very weak synapses might lack stability, leading to retraction of the 
corresponding spine. Likewise, various factors could explain the 
underestimation of strong weights: experimental artifacts, finite-size 
effects33, supra-linear EPSP summation32, heterogeneities in single 
neuron thresholds. Note also that distributions of synaptic weights 

far from capacity lack the large fraction of zero-weight synapses and 
therefore cannot reproduce well the experimentally observed distri-
bution (see Supplementary Fig. 1).

Statistics of two-neuron bidirectional connectivity
We next turned to joint distributions of pairs of synaptic weights, 
again in networks optimizing storage capacity. We first considered 
the joint distribution of synaptic weights connecting two neurons. 
The calculation, using the cavity method (Supplementary Note), 
yields a correlated two-dimensional Gaussian distribution, truncated 
in the upper right quadrant (Fig. 3a). The intuition underlying this 
correlation is the following: in a given attractor, a subset of neurons 
needs to remain active. To allow such a state to be an attractor of 
the dynamics, synapses connecting neurons in this subset need to be 
strengthened. Thus, pairs of neurons belonging to this subset tend to 
develop reciprocal connections. This leads to an over-representation 
of reciprocally connected neurons, in agreement with cortical slice 
data11,12,34 (but see ref. 10). This over-representation can be quanti-
fied by r, the ratio of the probability of finding reciprocally connected 
neurons divided by the probability of reciprocal connections in a ran-
dom Erdos-Renyi graph11. At maximal capacity, this parameter is 
again strongly dependent on the robustness parameter (Fig. 3b). It 
increases both with the number of patterns stored in the connectivity 
matrix and with robustness of information storage. For the experi-
mentally observed connection probability (c = 0.116), r is close to the 
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Figure 3 Joint distribution of synaptic weights connecting a pair of 
neurons. (a) The joint distribution is a correlated two-dimensional Gaussian, 
truncated on the upper right quadrant. (b) Excess of reciprocally connected 
pairs (compared to a random Erdos-Renyi network), versus the robustness 
parameter ρ. Black curves show the result of the calculation for various 
coding levels f; black circles, numerical simulations using the perceptron 
learning algorithm (N = 800); orange line, experimentally observed excess. 
(c) Reciprocal connection probability–connection probability plane. The 
thin black lines show reciprocal connection probability in fully symmetric 
(y = x) and random asymmetric (y = x2) networks. Black curves show the 
results of the calculation for various robustness levels, parameterized  
by ρ (ρ = 0 at the rightmost point of the curves; ρ →  at the origin),  
for different values of f (see b). Black circles, numerical simulations;  
red star, experimental data11. (d) Distribution of weights for bidirectionally 
connected pairs (red) and unidirectionally connected pairs (blue).  
Smooth curves, theory; histograms, experimental data.
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Figure 4 Distributions of degrees in optimal network (N = 800, f = 0.5, 
for two values of ρ, ρ = 0 (black) and ρ = 4 (red). (a) Distribution of  
in-degrees. (b) Distribution of out-degrees. (c) Coefficient of variation  
(CV; s.d. divided by the mean) of the distribution of degrees as a function 
of network size. The CV of in-degrees (circles) scales as 1/ N  for large  
N, consistent with a random Erdos-Renyi graph (solid lines), while the  
CV of out-degrees (open squares) is independent of N (dashed line).  
(d) Anticorrelation between out-degree and majorityness, average number 
of active neurons in patterns in which a neuron is active. For ρ = 0, the 
Pearson correlation coefficient is r = −0.87 (P < 2 × 10−16), while for  
ρ = 4, r = −0.69 (P < 2 × 10−16).
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experimentally observed value (r ≈ 4) in a large range of coding levels 
f (Fig. 3c). For c = 0.116, r increases monotonically from r = 3.46 at  
f = 0.5 to r = 4.84 at f = 0.01. The experimentally observed value of r is 
obtained for a coding level of f ≈ 0.1. Figure 3c shows the reciprocal 
connection probability r as a function of the connection probability c.  
For a wide range of parameters, optimal networks lie approximately 
halfway between a perfectly symmetric network (r = c) and a random 
asymmetric network (r = c2). This leads to a ‘symmetry degree’ (cor-
relation between the two weights connecting a pair of neurons) that 
is close to 0.5, similar to that which was found in a previous study in 
a network with unconstrained weights35.

Song et al.11 also reported that bidirectionally connected pairs tend 
to contain stronger weights than unidirectionally connected pairs. 
Networks at maximal capacity also reproduce quantitatively this fea-
ture (Fig. 3d). In our theory, distributions of synaptic weights for 
bidirectionally connected pairs, and for unidirectionally connected 
pairs, are entirely determined by three parameters: c, r and the average 
synaptic weight. When we fix these three parameters at their experi-
mentally observed value, the two distributions reproduce well the 
data (Fig. 3d).

Degree distributions
We also analyzed other statistical properties of the connectivity matrix 
of optimal networks, using simulations with the perceptron learn-
ing rule (Online Methods). In particular, we found a striking differ-
ence between distributions of in- and out-degrees (numbers of input 
and output synapses per neuron; Fig. 4). While the distribution of  
in-degrees was not significantly different from that of a random 
Erdos-Renyi network (Fig. 4a), the distribution of out-degrees was 
much wider, with a s.d. that increases linearly with network size N, 
instead of the expected N  dependence. Out-degrees were strongly 
anticorrelated with ‘majorityness’. Majorityness of neuron i is defined 
as the average number of active neurons in patterns in which neuron 
i is active; that is, 

m

m m
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mh h h
, j

i j ifN∑ ∑
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This anticorrelation can be understood intuitively as follows.  
For neurons that are active in patterns that involve fewer neurons than 
average, synaptic weights need to be strengthened more than average 
to compensate for the smaller size of the sets of active neurons. This 
does not have a pronounced effect on incoming connections because 
of the constraint that the average incoming weights should be equal 
to the threshold divided by the mean number of active neurons in a 
pattern T/(fN) (up to fluctuations of order 1/ N ; Supplementary 
Note), but it does strongly affect outgoing connections, which do not 

collectively obey such a constraint. This leads to the predictions that 
cortical neurons should have very broad out-degree but not in-degree 
distributions and, counterintuitively, that ‘hub’ neurons that project 
to the largest number of neurons should be ‘minority’ neurons, in 
the sense that they tend to be active in patterns involving smaller- 
than-average sets of active neurons.

Statistics of higher order motifs
We next considered higher order motifs. Perin et al.13 considered  
subsets of n of neurons (3 ≤ n ≤ 8) and showed that the distribu-
tion of the total number of connections in such n-neuron networks 
departs from the distribution of a random network with the observed 
pair statistics. In particular, strongly connected subsets of n neurons  
are significantly more represented than in such random networks. In 
networks whose connectivity matrix is built using the perceptron rule, 
we find qualitatively the same trend in a network close to maximal 
capacity (Fig. 5), though the over-representation of highly connected 
subnetworks is smaller than in the data (Fig. 5b,c). This pattern of 
over-representation of highly connected subnetworks is largely due 
to the wide distribution of out-degrees (Fig. 5b).

Impact of inhibition on statistics of excitatory connectivity
We have so far focused on a situation in which inhibition is incor-
porated into the threshold of excitatory neurons. We now turn to a 
more realistic implementation where inhibition is modeled explic-
itly, using simulations in which the connectivity is obtained using 
the perceptron learning rule. We first start with a model in which 
inhibition provides a feedback onto the excitatory population that 
is proportional to the global activity of the excitatory population.  
For simplicity, we take this feedback to be linearly proportional to the 
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a b cFigure 5 Higher order motifs: probabilities of observing k connections in 
n-neuron subnetworks, as a function of k, for different values of n (3 ≤ n 
≤ 8; N = 800, f = 0.5, ρ = 4). (a) Probability of observing k connections, 
divided by the probability to observe k connections in a random network 
with identical pair statistics. (b) Observed probability (red) and expected 
probability in a random network with observed pair statistics (black) are 
plotted together in logarithmic scale. The figure also shows the probability 
of observing k connections in a random network with the same pair 
statistics and the same distribution of in- and out-degrees as observed in 
the network at maximal capacity (dotted blue). The almost perfect overlap 
between curves shows that the pattern of over-representation is largely 
due to the wide distribution of out-degrees. (c) Observed probability (red) 
and expected probability in a random network with observed pair statistics 
(black) in cortical slices (data from ref. 13).
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global activity of the excitatory population and to be instantaneous. 
This leads to an effective connectivity between excitatory neurons that 
is given by wij – wIT/(fN), where wI represents the strength of inhibi-
tory feedback (Online Methods and ref. 36). This effective connectiv-
ity between neurons is not bounded by zero, but rather by a negative 
number proportional to −wI. As a result, the connection probability 
is no longer bounded by above by 0.5, but can now be larger than 
0.5 (Fig. 6a). For a fixed value of ρ, both connection probability and 
reciprocal connection probability are an increasing function of wI. 
However, arbitrarily low values of the connection probability can still 
be obtained at arbitrary values of wI, through an appropriate increase 
of ρ. In particular, connection and reciprocal connection probabilities 
close to those in experimental data can be achieved at any value of wI 
by an appropriate increase of ρ (for example, for wI = 1, ρ has to be 
increased from ρ ≈ 4 to ρ ≈ 8 to reproduce the data). The distributions 
of degrees are qualitatively unaffected by the presence of inhibition 
(Fig. 6c,d).

We also considered a model in which individual inhibitory neurons 
are modeled explicitly as binary units. We considered three variants 
of such a model: (i) a model in which all synapses involving inhibi-
tion (E→I, I→I, I→E) are random but fixed, (ii) a model in which 
I→E synapses are plastic but synapses onto inhibitory neurons are 
fixed and random, and (iii) a model in which all synapses are plas-
tic. Synapses that were fixed were drawn randomly according to a 
uniform distribution between zero and twice the average value. This 
led to non-sparse connectivity for those synapses, consistent with in 
vitro studies that show close to full connectivity between some types 
of interneurons and pyramidal cells27. In models (i) and (ii), the pat-
tern of activity in the inhibitory subnetwork was determined from 
the pattern of activity in the excitatory subnetwork and the input 
connectivity of interneurons; in model (iii), the pattern of activity in 
the inhibitory subnetwork was random, with the same coding level as 
the excitatory subnetwork. In all cases, we used the perceptron learn-
ing algorithm to learn a set of connectivity matrices that satisfied all 

constraints imposed by the patterns. Models (i) and (ii) produced high 
connection probabilities at low values of the robustness parameter ρ 
(Fig. 6b), as in the simpler model with linear inhibitory feedback. 
Model (iii), by contrast, was similar to the purely excitatory network: 
it produced excitatory connection probabilities smaller than 0.5  
for all values of parameters, while the inhibitory connection prob-
abilities were higher than 0.5, consistent with ref. 33. In all models,  
E→E connection probabilities decreased as ρ increased, and the  
over-representation of bidirectionally connected pairs was similar  
in all models (Fig. 6b).

Statistics of connectivity in networks storing sequences
One might wonder whether the observed statistical properties of 
optimal synaptic matrices are specific to the format of the stored 
information. We therefore considered an alternative model in which 
information is stored in the form of sequences of activity: if the net-
work is at some point in time in a given pattern ηµ, then it has to 
recall the next pattern in the stored sequence ηµ+1 at the next time 
step. Successive patterns in the sequence were again taken to be inde-
pendent for simplicity. We found that the distribution of synaptic 
weights for such a network is identical to the distribution in networks 
storing fixed-point attractors (Supplementary Note). By contrast, 
the joint distribution of weights of pairs of cells in such a network, 
computed using the cavity method, is drastically different from the 
one in a network storing fixed-point attractors: it simply factors into a 
product of distributions of single weights. In other words, there are no  
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Figure 6 Effect of inhibition on statistics of connectivity. (a) Connection 
probability versus inhibition strength wI, for three values of ρ, for  
N = 800 and f = 0.5, in the model with global linear inhibitory feedback. 
(b) Bidirectional connection probability versus connection probability, 
for the same three values of ρ, with w1 = 1, in different models with 
inhibition. Blue circles, model with global inhibitory feedback. All other 
symbols show models in which individual inhibitory neurons are modeled 
explicitly: for violet squares, all connections involving inhibition are fixed; 
for magenta diamonds, I→E connections are plastic and other connections 
are fixed; for orange triangles, all connections are plastic. Other curves 
and symbols as in Figure 3. (c) Effect of global feedback inhibition on in-
degree distributions. Red curves correspond to ρ = 4, black to ρ = 0.  
For each color, three distributions are shown: w1 = 0 (thin), 1 
(intermediate) and 2 (thick). (d) Effect of global feedback inhibition on 
out-degree distributions. Same parameters as in c.
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Figure 7 Reciprocal connection probability as a function of connection 
probability: Fixed-point attractors versus sequences of activity.  
The black curves show the analytical calculations for networks storing 
information as fixed-point attractors, as in Figure 3 for different  
coding levels (same conventions as in Fig. 3: full line, f = 0.5; 
dashed line, f = 0.1; dotted line, f = 0.01); The orange curve shows 
the calculation for networks storing sequences of activity, for which 
the reciprocal connection probability is equal to the square of the 
connection probability, for any value of the coding level f. Filled circles 
indicate the results of numerical simulations using the perceptron 
algorithm (black: fixed point attractors, ρ = 0, 2, 4, 6; orange: 
sequences, ρ = 0, 4).
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correlations between weights in a pair of neurons, and no over- 
representations of reciprocally connected pairs of neurons (Fig. 7).

The intuitive reason why the two synaptic weights of a pair of neu-
rons are uncorrelated in a network storing sequences of activity is that 
the two synaptic weights are driven by independent sources: for the 
transition from pattern µ to pattern µ + 1, the connection from neu-
ron i to neuron j has to associate hm

i  with hm
j

+1, while the connection 
from j to i has to associate hm

j  to hm
i

+1, which are uncorrelated with 
the values of η seen by the connection in the opposite direction.

DISCUSSION
We have analyzed the statistics of connectivity in a large network  
of neurons connected by a plastic excitatory connectivity matrix  
that maximizes information storage. We considered two scenarios: 
one in which the network is optimized for information storage in  
the form of fixed point attractors and another in which it is optimized 
for storage of sequences of activity. In both types of networks, we 
found that optimal information storage leads to a large fraction of 
zero-weight synapses, which can be interpreted either as silent or 
potential synapses. The resulting connection probability (probability 
that a synapse has a strictly positive weight) is necessarily smaller or 
equal than 0.5 in networks with fixed inhibition, but can be larger 
in models in which inhibitory neurons are modeled explicitly. In 
all cases, the connection probability decreases monotonically as the 
robustness level (size of the basin of attraction of stored patterns) 
increases. We also find in both types of networks a broad distribution  
of out-degrees, whose width scales with network size N, rather  
than the expected N . A major difference between fixed point  
attractor and sequence scenarios is the joint distribution of the two 
synaptic weights connecting a pair of neurons: in the fixed point 
attractor scenario, we find a strong over-representation of recipro-
cally connected pairs, while no such over-representation is found in 
the sequence scenario.

Some of our results are in notable agreement with published data 
on the statistics of connectivity of various cortical areas. Virtually all 
electrophysiological studies in vitro5–7,10–12,14 find connection prob-
abilities of order 0.1–0.2 for pairs of nearby pyramidal cells. This is 
consistent with networks with a highly robust storage of information. 
Furthermore, the distribution of synaptic weight at maximal capacity is 
in good agreement with data, once the empirical connection probabil-
ity and mean synaptic weights are fixed (Fig. 2c). Published data show 
a diversity of degrees of over-representation of reciprocal connections, 
from r ≈ 4 in prefrontal cortex12 and visual cortex11, r ≈ 3 in somato-
sensory cortex6, r ≈ 2 in visual cortex12 and r ≈ 1 in barrel cortex10. r ≈ 4  
is close to the value that is predicted for a network optimizing storage 
of fixed point attractors, given the empirical connection probability, 
for a wide range of coding levels f. Conversely, r ≈ 1 is the value that is 
predicted for a network optimizing storage of sequences. Our model 
also reproduces quantitatively the distribution of synaptic weights for 
both bidirectionally and unidirectionally connected pairs11. Finally, 
we found that the statistics of higher order motifs was in qualitative 
agreement with the data of refs. 11,13. Note that the results from our 
model are also consistent with data from Mrsic-Flogel and colleagues, 
who have documented that pairs of neurons that share the same  
selectivity properties have an greater connection probability than 
pairs that do not14, and with other data showing that excitatory  
cortical neurons form fine-scale functional networks37. Overall, 
a surprisingly large amount of experimental data on short-range  
synaptic excitatory connectivity in cortex can be reproduced by a 
network designed to store highly robust fixed-point attractors close 
to its maximal storage capacity. This scenario fits well with increasing 

amount of experimental evidence for attractor dynamics in various 
cortical areas: auditory cortex38, areas of the temporal lobe19,39,40, and 
parietal and prefrontal cortices18,20,21. Interestingly, the data of ref. 12 
indicate a larger proportion of reciprocally connected pairs of neurons 
in prefrontal cortex, the area most associated with persistent activ-
ity and attractor dynamics, than in visual cortex. The data of ref. 10,  
recorded in barrel cortex, do not show any over-representation of 
reciprocally connected pairs, consistent with the fact that barrel cortex 
experiences highly dynamic patterns of activity in vivo.

There are a number of caveats that need to be considered when 
comparing our model to experimental data. First, space is ignored 
in our model, whereas connection probability decays with distance 
in cortical networks13. However, the data of ref. 11, which are in 
quantitative agreement with our theory, take into consideration 
only pairs separated by short distances (typically less than 100 µm), 
for which connection probability has been shown explicitly not to 
depend appreciably on distance11. For data sets in which connec-
tion probability depends appreciably on distance13, we expect spa-
tial effects to lead to an increase in the over-representation of highly  
connected subsets of neurons. This could potentially explain the 
quantitative differences we find between our simulations and the data 
of ref. 13. Second, our model ignores functional subdivisions between 
pyramidal cells, which might affect the statistics of their connectivity.  
For example, it has been suggested that ‘sister’ pyramidal cells aris-
ing from the same mother cell in the developing neocortex have a 
larger than average connection probability41. However, the possibility 
cannot be excluded that this preferential connectivity is developed 
through learning in a network in which sister cells share similar selec-
tivity properties, which would lead to a scenario consistent with the 
model presented here.

The analysis presented here suggest that a distribution of weights 
in which the majority are zero is a universal feature of neural  
systems close to their storage capacity, since such a distribution has 
been shown to be optimal in all neural architectures and models con-
sidered to date31–33,42. By contrast, higher order statistics turn out 
to be specific to the format of stored information. Storage of fixed-
point attractors leads to connectivity matrices with a strong degree of  
symmetry, while storage of sequences leads to asymmetric connec-
tivity matrices. Therefore, our theory predicts a strong link between 
the joint statistics of connections in a pair of neurons and the spatio-
temporal statistics of the information stored by the network. A similar 
conclusion was reached by Clopath et al.43, who investigated how a 
specific synaptic plasticity rule based on presynaptic spike trains and 
filtered post-synaptic membrane potentials sculpts the connectivity 
of a recurrent network.

There are a number of testable predictions that follow from our 
results. (i) The analysis predicts a wide distribution of out-degrees. 
A definitive test of this prediction will become possible when cortical 
circuits at the scale of the local cortical connectivity are fully recon-
structed using serial scanning electron microscopy techniques44.  
(ii) It predicts that out-degrees are anticorrelated with the majority-
ness of neurons. This would be the hardest prediction to test, since it 
would involve measuring a large number of patterns of activity in vivo 
and correlating majorityness with out-degrees, presumably measured  
in vitro or using dense reconstruction. (iii) It predicts that in dis-
eased states in which information storage is impaired, statistics of 
connectivity should depart from the ones derived here. In particular, 
the over-representation of reciprocal connections in pairs of neu-
rons should decrease in such conditions. Finally, specific predictions 
about statistics of connectivity depend on specific assumptions on 
the time scale of the learning process that allows cortical networks 
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to reach their optimal point. The most straightforward assumption 
would be that during development both the number of stored patterns 
of activity and their robustness increase progressively. This scenario 
would predict that connection probability decreases with develop-
ment, consistent with synaptic pruning observed in the late stage of 
development45. It would also predict that the over-representation of 
bidirectional connections grows progressively with development, a 
prediction that could be tested by comparing data at different stages 
of development.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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ONLINE METHODS
Network storing fixed-point attractors. We consider a fully connected network 
of N neurons, connected through an excitatory synaptic weight matrix wij ≥ 0 for 
all i,j. The network has to learn to stabilize p random patterns, { }hm

i , for µ = 1, …, p,  
with robustness κ, where hm

i  are random independent binary variables, such that 
hm
i =1 with probability f and hm

i = 0 with probability 1 – f, for all i,µ, where f is 
the coding level (0 < f ≤ 0.5). This leads to the following constraints:

• when neuron i should be active in pattern µ (that is, hm
i =1 ): 

j
ij jw T K∑ > +hm

• when neuron i should be inactive in pattern µ (that is, hm
i = 0): 

j
ij jw T K∑ < −hm

where T is the threshold and K measures the size of the basins of attraction of 
the patterns.

Networks storing sequences. We consider sequences of p random patterns, { }hm
i ,  

for µ = 1, … , p, with robustness κ, where hm
i  are again random independent 

binary variables, such that hm
i =1 with probability f and hm

i = 0 with probability  
1 – f for all i,µ, where f is the coding level (0 < f ≤ 0.5). The network should  
learn to retrieve robustly the whole sequence, starting from the first pattern.  
This leads to the following constraints:

• when neuron i should be active in pattern µ + 1 (that is, hm
i

+ =1 1):

j
ij jw T K∑ > +hm

• when neuron i should be inactive in pattern µ + 1 (that is, hm
i

+ =1 0 ): 

j
ij jw T K∑ < −hm

models with inhibition. Model with global linear feedback inhibition. In the 
model with instantaneous feedback inhibition, we take the inhibitory feedback 
to be instantaneous and linearly proportional to the average activity in the excita-
tory network. The total inputs to neuron i become 

j
ij j

j
jw S t w T

fN
S t∑ ∑( ) − ( )I

 

where wI measures the strength of inhibition, such that when the network  
is in a fixed point attractor the average inhibitory input is wIT. For example,  
wI = 1 means that the average inhibitory input is equal to the threshold.  
This means that the excitatory inputs have to be equal (on average) to twice the 
threshold for the neuron to be active.

Equation (5) is equivalent to a model in which the connectivity matrix  
is wij – wIT/(fN). In such a model, synaptic weights are no longer bounded by 0, 
but can become negative and are bounded by below by −wIT/(fN) (ref. 36).

Models with individual inhibitory interneurons. We also studied a model in 
which NI = 0.25N individual binary inhibitory interneurons are coupled to the 
N excitatory neurons. The states of the inhibitory neurons are denoted S ti

I ( ) .  
Connectivity matrices of E→I neurons are denoted wij

IE . Inhibitory neurons 
are connected together through I→I connections, which are denoted wij

II . They 
project back onto excitatory neurons with synaptic connections wij

EI . The dynam-
ics of the network obey the equations 

S t w S t w S t Ti
j

ij j
j

ij j+( ) = ( ) − ( ) −










∑ ∑1 Θ EI I

S t w S t w S t Ti
j

ij j
j

ij i
I IE II I+( ) = ( ) − ( ) −











∑ ∑1 Θ

 

(1)(1)

(2)(2)

(3)(3)

(4)(4)

(5)(5)

(6)(6)

(7)(7)

where Θ is the Heaviside function. We considered three variants of such a model, 
depending on which connections involving interneurons are plastic.

(i) Model with fixed inhibitory connectivity. In this model, all connections 
involving inhibition were drawn randomly and independently from a uniform 
distribution from zero to twice the mean of the distribution. The means of the 
distributions were taken to be (1 + wI)T/(fN) for E→I connections, wIT/(fINI) for 
I→I connections, and wIT/(fINI) for I→E connections, where we used fI = 0.5. 
This choice ensured that the mean total inputs to inhibitory neurons were equal 
to the threshold when the excitatory subnetwork was in a state corresponding to 
one of the patterns to be stored, with coding level f. For each of the patterns to be 
stored, we then ran the dynamics of the inhibitory subnetwork with fixed excita-
tory inputs until it reached a fixed point. This fixed point had on average half the 
inhibitory neurons active. It determined the inhibitory inputs to the excitatory 
neurons, which was maintained fixed during the learning process that involved 
only excitatory to excitatory weights.

(ii) Model with plastic I→E connections but fixed connections to inhibitory 
neurons. In this model, all connections involving inhibition were initialized ran-
domly as in model (i). The state of the inhibitory subnetwork was also determined 
as in model (i) and remained fixed during the learning process. However, dur-
ing the learning process both E→E and I→E weights were allowed to change.  
We also imposed a constraint that the mean excitatory and inhibitory weights 
remain constant during the learning process, to avoid unrealistic growth of both 
types of weights that typically occurs in models in which both excitatory and 
inhibitory plastic weights obey a perceptron learning rule33.

(iii) Model in which all connections are plastic. In this model, the state of the 
inhibitory network in each pattern was drawn randomly. Each inhibitory neuron 
was active with probability fI = 0.5 in all patterns and inactive with probability  
1 – fI. During the learning process, all connections were allowed to change in 
order to satisfy the constraints imposed by the patterns, in both the excitatory 
and the inhibitory subnetworks. We again imposed a constraint that the mean 
weights do not change during the learning process.

Analytical calculations. Details of the calculations can be found in the 
Supplementary Note.

experimental data. We use data recorded by J. Sjöström in cortical slices using 
quadruple recordings, which has already been analyzed in detail11. It contains 
997 nonzero synaptic connections, out of 8,596 possible connections (connec-
tion probability 0.116). The histogram of synaptic weights is shown in Figure 2c 
(gray histogram). The histograms of synaptic weights of bidirectionally connected 
pairs, as well as unidirectionally connected pairs, are shown in Figure 3c.

theory versus experiment. To compare experimental and theoretical  
distributions, we considered only the part of the distribution above 0.1 mV 
(owing to possible under-reporting of weak connections due to noise).  
The theoretical distribution is then uniquely determined by two numbers 
extracted from data: the connection probability gives the parameter B in equation 
(28) of the Supplementary Note and the mean synaptic weight gives ws through 
equation (29) of the Supplementary Note. Comparison of the theoretical curve 
with the data is shown in Figure 2c.

To obtain the distributions of bidirectionally/unidirectionally connected pairs, 
we also need a third parameter, λ. This parameter depends on the coding level f. 
We chose this parameter to give the observed over-representation of bidirection-
ally connected pairs r. The value of f that gives r = 4 is f ≈ 0.1. The comparison 
with the data is shown in Figure 3c.

Numerical simulations. We applied the perceptron learning algorithm, modified 
to take into account the fact that synapses are sign-constrained31. In the simula-
tion, both synapses and thresholds were integer-valued. The initial value of the 
threshold was N, while synapses were initially uniformly distributed between 
0 and twice the average value predicted by the theory. Patterns were generated 
randomly one after the other. After each pattern generation, we used the per-
ceptron learning algorithm to modify the synaptic weights until the patterns 
were learned correctly by all neurons in the network. Modifications were only 
made if equations (1) and (2) were not satisfied. In that event, active synapses 
were updated by +1 if the neuron was supposed to be active in that pattern or  
by −1 if the neuron was supposed to be silent in that pattern. If all patterns  
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could be learned correctly after a number of iterations smaller than 4,000 per 
patterns, a new pattern was generated and added to the set. If not, for all neurons 
that could not learn all patterns, we multiplied all synapses and the threshold by a 
factor of 2 and continued the learning process. We continued this iteration until 
the threshold was equal to 4,096N. For each neuron, we defined the maximal 
capacity as the size of the largest set that could be learned using this procedure. 
Supplementary Figure 2 shows the fraction of neurons that stored correctly all 
patterns as a function of the number of patterns, for different values of N and 
two values of ρ, with f = 0.5. The comparison with the analytical prediction for 
the storage capacity (1 for ρ = 0, 0.14 for ρ = 4) shows that the algorithm comes 
very close to the theoretical storage capacity.

To analyze the connectivity matrix at maximal storage capacity, we used for 
each neuron the synaptic weights obtained at its maximal capacity. We com-
puted the histogram of synaptic weights and compared them with the analytical 

prediction (Fig. 2a). The connectivity matrix was composed of a majority of 
zero or extremely low weights, and a minority of large weights. We binarized the 
connectivity matrix w w wij ij

b
c= −( )Θ , where wc was taken to be 0.1 times the 

average weight. We then analyzed the statistics of the binarized matrix: connec-
tion probability (Fig. 2b), probabilities of bidirectional connections (Fig. 3b,c), 
distributions of degrees (Fig. 4) and probabilities of higher order motifs (Fig. 5). 
We also analyzed finite-size effects, plotting observed probabilities as a function 
of 1/N (Supplementary Fig. 3). Correlation coefficients and associated P-values 
reported in Figure 4 were computed using R.

code availability. The code for solving the equations presented in the 
Supplementary Note and the code for simulations with the perceptron algorithm 
were written in C; both are available on request.

A Supplementary methods checklist is available.
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